OK: Found an XML parser.
OK: Support for GZIP encoding.
OK: Support for character munging.

Notice: Undefined property: MagpieRSS::$etag in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_fetch.inc on line 157

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Deprecated: Function split() is deprecated in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 155

Notice: Undefined index: description in /home/taiyoame/public_html/packages/superhero/themes/superhero/magpierss/rss_parse.inc on line 404

Example Output

Channel: Latest Movs

RSS URL:

Parsed Results (var_dump'ed)

object(MagpieRSS)#4 (22) {
  ["parser"]=>
  resource(10) of type (Unknown)
  ["current_item"]=>
  array(0) {
  }
  ["items"]=>
  array(10) {
    [0]=>
    array(11) {
      ["title"]=>
      string(124) "Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink"
      ["link"]=>
      string(169) "https://latestmovs.packagingnewsonline.com/science/parkinsons-disease-drug-ropinirole-safely-slowed-the-progression-of-als-for-over-6-months-in-a-clinical-trial-novlink/"
      ["dc"]=>
      array(1) {
        ["creator"]=>
        string(12) "Aaron Mathis"
      }
      ["pubdate"]=>
      string(31) "Sat, 03 Jun 2023 09:23:54 +0000"
      ["category"]=>
      string(7) "science"
      ["guid"]=>
      string(169) "https://latestmovs.packagingnewsonline.com/science/parkinsons-disease-drug-ropinirole-safely-slowed-the-progression-of-als-for-over-6-months-in-a-clinical-trial-novlink/"
      ["description"]=>
      string(1318) "

Journal Reference: Satoru Morimoto, Shinichi Takahashi, Daisuke Ito, Yugaku Daté, Kensuke Okada, Chris Kato, Shiho Nakamura, Fumiko Ozawa, Chai Muh Chyi, Ayumi Nishiyama, Naoki Suzuki, Koki Fujimori, Tosho Kondo, Masaki Takao, Miwa Hirai, Yasuaki Kabe, Makoto Suematsu, Masahiro Jinzaki, Masashi Aoki, Yuto Fujiki, Yasunori Sato, Norihiro Suzuki, Jin Nakahara, Hideyuki Okano. Phase 1/2a clinical trial ... Read more

The post Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(6277) "

Journal Reference:

  1. Satoru Morimoto, Shinichi Takahashi, Daisuke Ito, Yugaku Daté, Kensuke Okada, Chris Kato, Shiho Nakamura, Fumiko Ozawa, Chai Muh Chyi, Ayumi Nishiyama, Naoki Suzuki, Koki Fujimori, Tosho Kondo, Masaki Takao, Miwa Hirai, Yasuaki Kabe, Makoto Suematsu, Masahiro Jinzaki, Masashi Aoki, Yuto Fujiki, Yasunori Sato, Norihiro Suzuki, Jin Nakahara, Hideyuki Okano. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell, 2023; 30 (6): 766 DOI: 10.1016/j.stem.2023.04.017

Some patients were more responsive to ropinirole treatment than others, and the researchers were able to predict clinical responsiveness in vitro using motor neurons derived from patient stem cells.

“ALS is totally incurable, and it’s a very difficult disease to treat,” says senior author and physiologist Hideyuki Okano of the Keio University School of Medicine in Tokyo. “We previously identified ropinirole as a potential anti-ALS drug in vitro by iPSC drug discovery, and with this trial, we have shown that it is safe to use in ALS patients and that it potentially has some therapeutic effect, but to confirm its effectiveness we need more studies, and we are now planning a phase 3 trial for the near future.”

To test ropinirole’s safety and effectiveness in patients with sporadic (i.e., non-familial) ALS, the team recruited 20 patients receiving care at Keio University Hospital in Japan. None of the patients carried genes predisposing to the disease, and, on average, they had been living with ALS for 20 months.

The trial was double blinded for the first 24 weeks, meaning that the patients and doctors did not know which patients were receiving ropinirole and which were receiving a placebo. Then, for the following 24 weeks, all patients who wished to continue were knowingly administered ropinirole. Many patients dropped out along the way — partially due to the COVID-19 pandemic — so only 7/13 ropinirole-treated and 1/7 placebo-followed-by-ropinirole-treated patients were monitored for the full year. However, no patients dropped out due to safety reasons.

To determine whether the drug was effective at slowing the progression of ALS, the team monitored a variety of different measures throughout the trial and for 4 weeks after treatment concluded. These included changes in the patients’ self-reported physical activity and ability to eat and drink independently, activity data from wearable devices, and physician-measured changes in mobility, muscle strength, and lung function.

“We found that ropinirole is safe and tolerable for ALS patients and shows therapeutic promise at helping them sustain daily activity and muscle strength,” says first author Satoru Morimoto, a neurologist at the Keio University School of Medicine in Tokyo.

Patients who received ropinirole during both phases of the trial were more physically active than patients in the placebo group. They also showed slower rates of decline in mobility, muscle strength, and lung function, and they were more likely to survive.

The benefits of ropinirole relative to the placebo became increasingly pronounced as the trial progressed. However, placebo group patients who began taking ropinirole halfway through the trial did not experience these improvements, which suggests that ropinirole treatment may only be useful if treatment is started earlier and administered over a longer duration.

Next, the researchers investigated the mechanisms behind ropinirole’s effects and looked for molecular markers of the disease. To do this, they generated induced pluripotent stem cells from the patients’ blood and grew these cells into motor neurons in the lab. Compared to healthy motor neurons, they found that motor neurons from ALS patients showed distinct differences in structure, gene expression, and metabolite concentrations, but ropinirole treatment reduced these differences.

Specifically, motor neurons grown from ALS patients had shorter neurites compared to healthy motor neurons, but these axons grew to a more normal length when the cells were treated with ropinirole. The team also identified 29 genes related to cholesterol synthesis that tended to be upregulated in motor neurons from ALS patients, but ropinirole treatment suppressed their gene expressions over time. They also identified lipid peroxide as a good surrogate marker for estimating the effect of ropinirole both in vitro and clinically.

“We found a very striking correlation between a patient’s clinical response and the response of their motor neurons in vitro,” says Morimoto. “Patients whose motor neurons responded robustly to ropinirole in vitro had a much slower clinical disease progression with ropinirole treatment, while suboptimal responders showed much more rapid disease progression despite taking ropinirole.”

The researchers say that this suggests that this method — of growing and testing motor neurons from patient-derived induced pluripotent stem cells — could be used clinically to predict how effective the drug would be for a given patient. It’s unclear why some patients are more responsive to ropinirole than others, but the researchers think that it’s probably due to genetic differences that they hope to pinpoint in future studies.

Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink

The post Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1318) "

Journal Reference: Satoru Morimoto, Shinichi Takahashi, Daisuke Ito, Yugaku Daté, Kensuke Okada, Chris Kato, Shiho Nakamura, Fumiko Ozawa, Chai Muh Chyi, Ayumi Nishiyama, Naoki Suzuki, Koki Fujimori, Tosho Kondo, Masaki Takao, Miwa Hirai, Yasuaki Kabe, Makoto Suematsu, Masahiro Jinzaki, Masashi Aoki, Yuto Fujiki, Yasunori Sato, Norihiro Suzuki, Jin Nakahara, Hideyuki Okano. Phase 1/2a clinical trial ... Read more

The post Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(6277) "

Journal Reference:

  1. Satoru Morimoto, Shinichi Takahashi, Daisuke Ito, Yugaku Daté, Kensuke Okada, Chris Kato, Shiho Nakamura, Fumiko Ozawa, Chai Muh Chyi, Ayumi Nishiyama, Naoki Suzuki, Koki Fujimori, Tosho Kondo, Masaki Takao, Miwa Hirai, Yasuaki Kabe, Makoto Suematsu, Masahiro Jinzaki, Masashi Aoki, Yuto Fujiki, Yasunori Sato, Norihiro Suzuki, Jin Nakahara, Hideyuki Okano. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell, 2023; 30 (6): 766 DOI: 10.1016/j.stem.2023.04.017

Some patients were more responsive to ropinirole treatment than others, and the researchers were able to predict clinical responsiveness in vitro using motor neurons derived from patient stem cells.

“ALS is totally incurable, and it’s a very difficult disease to treat,” says senior author and physiologist Hideyuki Okano of the Keio University School of Medicine in Tokyo. “We previously identified ropinirole as a potential anti-ALS drug in vitro by iPSC drug discovery, and with this trial, we have shown that it is safe to use in ALS patients and that it potentially has some therapeutic effect, but to confirm its effectiveness we need more studies, and we are now planning a phase 3 trial for the near future.”

To test ropinirole’s safety and effectiveness in patients with sporadic (i.e., non-familial) ALS, the team recruited 20 patients receiving care at Keio University Hospital in Japan. None of the patients carried genes predisposing to the disease, and, on average, they had been living with ALS for 20 months.

The trial was double blinded for the first 24 weeks, meaning that the patients and doctors did not know which patients were receiving ropinirole and which were receiving a placebo. Then, for the following 24 weeks, all patients who wished to continue were knowingly administered ropinirole. Many patients dropped out along the way — partially due to the COVID-19 pandemic — so only 7/13 ropinirole-treated and 1/7 placebo-followed-by-ropinirole-treated patients were monitored for the full year. However, no patients dropped out due to safety reasons.

To determine whether the drug was effective at slowing the progression of ALS, the team monitored a variety of different measures throughout the trial and for 4 weeks after treatment concluded. These included changes in the patients’ self-reported physical activity and ability to eat and drink independently, activity data from wearable devices, and physician-measured changes in mobility, muscle strength, and lung function.

“We found that ropinirole is safe and tolerable for ALS patients and shows therapeutic promise at helping them sustain daily activity and muscle strength,” says first author Satoru Morimoto, a neurologist at the Keio University School of Medicine in Tokyo.

Patients who received ropinirole during both phases of the trial were more physically active than patients in the placebo group. They also showed slower rates of decline in mobility, muscle strength, and lung function, and they were more likely to survive.

The benefits of ropinirole relative to the placebo became increasingly pronounced as the trial progressed. However, placebo group patients who began taking ropinirole halfway through the trial did not experience these improvements, which suggests that ropinirole treatment may only be useful if treatment is started earlier and administered over a longer duration.

Next, the researchers investigated the mechanisms behind ropinirole’s effects and looked for molecular markers of the disease. To do this, they generated induced pluripotent stem cells from the patients’ blood and grew these cells into motor neurons in the lab. Compared to healthy motor neurons, they found that motor neurons from ALS patients showed distinct differences in structure, gene expression, and metabolite concentrations, but ropinirole treatment reduced these differences.

Specifically, motor neurons grown from ALS patients had shorter neurites compared to healthy motor neurons, but these axons grew to a more normal length when the cells were treated with ropinirole. The team also identified 29 genes related to cholesterol synthesis that tended to be upregulated in motor neurons from ALS patients, but ropinirole treatment suppressed their gene expressions over time. They also identified lipid peroxide as a good surrogate marker for estimating the effect of ropinirole both in vitro and clinically.

“We found a very striking correlation between a patient’s clinical response and the response of their motor neurons in vitro,” says Morimoto. “Patients whose motor neurons responded robustly to ropinirole in vitro had a much slower clinical disease progression with ropinirole treatment, while suboptimal responders showed much more rapid disease progression despite taking ropinirole.”

The researchers say that this suggests that this method — of growing and testing motor neurons from patient-derived induced pluripotent stem cells — could be used clinically to predict how effective the drug would be for a given patient. It’s unclear why some patients are more responsive to ropinirole than others, but the researchers think that it’s probably due to genetic differences that they hope to pinpoint in future studies.

Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink

The post Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685784234) } [1]=> array(11) { ["title"]=> string(55) "Buckle up! A new class of materials is here – NovLink" ["link"]=> string(102) "https://latestmovs.packagingnewsonline.com/science/buckle-up-a-new-class-of-materials-is-here-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Sat, 03 Jun 2023 04:59:08 +0000" ["category"]=> string(7) "science" ["guid"]=> string(101) "http://latestmovs.packagingnewsonline.com/science/buckle-up-a-new-class-of-materials-is-here-novlink/" ["description"]=> string(962) "

Journal Reference: David M.J. Dykstra, Coen Lenting, Alexandre Masurier, Corentin Coulais. Buckling Metamaterials for Extreme Vibration Damping. Advanced Materials, 2023; DOI: 10.1002/adma.202301747 Buckling does the trick A team of researchers from the University of Amsterdam has now found a way to create materials that are stiff, but still good at absorbing vibrations — and equally ... Read more

The post Buckle up! A new class of materials is here – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(2967) "

Journal Reference:

  1. David M.J. Dykstra, Coen Lenting, Alexandre Masurier, Corentin Coulais. Buckling Metamaterials for Extreme Vibration Damping. Advanced Materials, 2023; DOI: 10.1002/adma.202301747

Buckling does the trick

A team of researchers from the University of Amsterdam has now found a way to create materials that are stiff, but still good at absorbing vibrations — and equally importantly, that can be kept very light-weight. David Dykstra, lead author of the publication, explains: “We discovered that the trick was to use materials that buckle, like thin metal sheets. When put together in a clever way, constructions made out of such buckled sheets become great absorbers of vibrations — but at the same time, they preserve a lot of the stiffness of the material they are made out of. Moreover, the sheets do not need to be very thick, and so the material can be kept relatively light.” The image shows an example of a material that uses this buckling of metal sheets to combine all of these desired properties.

A host of applications

The researchers thoroughly investigated the properties of these buckled materials, and found that they all showed this magical combination of stiffness and ability to dissipate vibrations. As known materials do not have this desired combination of properties, the new lab-made materials (or metamaterials) have a very wide range of potential applications, and at a very wide range of scales. Possible uses range from meter-sized (think of aerospace, automotive applications and many other civil designs) to the microscale (applications such as microscopes or nanolithography). Dykstra: “Humans like to build things — small things and big things — and we almost always want these structures to be light. If that can be done with materials that are both stiff and good at shock-absorbing, many existing designs can be improved and many new designs become possible. There really is no end to the possible applications!”

Buckle up! A new class of materials is here – NovLink

The post Buckle up! A new class of materials is here – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(962) "

Journal Reference: David M.J. Dykstra, Coen Lenting, Alexandre Masurier, Corentin Coulais. Buckling Metamaterials for Extreme Vibration Damping. Advanced Materials, 2023; DOI: 10.1002/adma.202301747 Buckling does the trick A team of researchers from the University of Amsterdam has now found a way to create materials that are stiff, but still good at absorbing vibrations — and equally ... Read more

The post Buckle up! A new class of materials is here – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(2967) "

Journal Reference:

  1. David M.J. Dykstra, Coen Lenting, Alexandre Masurier, Corentin Coulais. Buckling Metamaterials for Extreme Vibration Damping. Advanced Materials, 2023; DOI: 10.1002/adma.202301747

Buckling does the trick

A team of researchers from the University of Amsterdam has now found a way to create materials that are stiff, but still good at absorbing vibrations — and equally importantly, that can be kept very light-weight. David Dykstra, lead author of the publication, explains: “We discovered that the trick was to use materials that buckle, like thin metal sheets. When put together in a clever way, constructions made out of such buckled sheets become great absorbers of vibrations — but at the same time, they preserve a lot of the stiffness of the material they are made out of. Moreover, the sheets do not need to be very thick, and so the material can be kept relatively light.” The image shows an example of a material that uses this buckling of metal sheets to combine all of these desired properties.

A host of applications

The researchers thoroughly investigated the properties of these buckled materials, and found that they all showed this magical combination of stiffness and ability to dissipate vibrations. As known materials do not have this desired combination of properties, the new lab-made materials (or metamaterials) have a very wide range of potential applications, and at a very wide range of scales. Possible uses range from meter-sized (think of aerospace, automotive applications and many other civil designs) to the microscale (applications such as microscopes or nanolithography). Dykstra: “Humans like to build things — small things and big things — and we almost always want these structures to be light. If that can be done with materials that are both stiff and good at shock-absorbing, many existing designs can be improved and many new designs become possible. There really is no end to the possible applications!”

Buckle up! A new class of materials is here – NovLink

The post Buckle up! A new class of materials is here – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685768348) } [2]=> array(11) { ["title"]=> string(88) "New method improves efficiency of ‘imaginative and prescient transformer’ AI systems" ["link"]=> string(134) "https://latestmovs.packagingnewsonline.com/science/new-method-improves-efficiency-of-imaginative-and-prescient-transformer-ai-systems/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Sat, 03 Jun 2023 01:03:04 +0000" ["category"]=> string(7) "science" ["guid"]=> string(134) "https://latestmovs.packagingnewsonline.com/science/new-method-improves-efficiency-of-imaginative-and-prescient-transformer-ai-systems/" ["description"]=> string(1115) "

Journal Reference: Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, Tianfu Wu. PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers. submitted to arXiv, 2023 [abstract] Transformers are among the most powerful existing AI models. For example, ChatGPT is an AI that uses transformer architecture, but the inputs used to train it are language. ... Read more

The post New method improves efficiency of ‘imaginative and prescient transformer’ AI systems first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(5031) "

Journal Reference:

  1. Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, Tianfu Wu. PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers. submitted to arXiv, 2023 [abstract]

Transformers are among the most powerful existing AI models. For example, ChatGPT is an AI that uses transformer architecture, but the inputs used to train it are language. ViTs are transformer-based AI that are trained using visual inputs. For example, ViTs could be used to detect and categorize objects in an image, such as identifying all of the cars or all of the pedestrians in an image.

However, ViTs face two challenges.

First, transformer models are very complex. Relative to the amount of data being plugged into the AI, transformer models require a significant amount of computational power and use a large amount of memory. This is particularly problematic for ViTs, because images contain so much data.

Second, it is difficult for users to understand exactly how ViTs make decisions. For example, you might have trained a ViT to identify dogs in an image. But it’s not entirely clear how the ViT is determining what is a dog and what is not. Depending on the application, understanding the ViT’s decision-making process, also known as its model interpretability, can be very important.

The new ViT methodology, called “Patch-to-Cluster attention” (PaCa), addresses both challenges.

“We address the challenge related to computational and memory demands by using clustering techniques, which allow the transformer architecture to better identify and focus on objects in an image,” says Tianfu Wu, corresponding author of a paper on the work and an associate professor of electrical and computer engineering at North Carolina State University. “Clustering is when the AI lumps sections of the image together, based on similarities it finds in the image data. This significantly reduces computational demands on the system. Before clustering, computational demands for a ViT are quadratic. For example, if the system breaks an image down into 100 smaller units, it would need to compare all 100 units to each other — which would be 10,000 complex functions.

“By clustering, we’re able to make this a linear process, where each smaller unit only needs to be compared to a predetermined number of clusters. Let’s say you tell the system to establish 10 clusters; that would only be 1,000 complex functions,” Wu says.

“Clustering also allows us to address model interpretability, because we can look at how it created the clusters in the first place. What features did it decide were important when lumping these sections of data together? And because the AI is only creating a small number of clusters, we can look at those pretty easily.”

The researchers did comprehensive testing of PaCa, comparing it to two state-of-the-art ViTs called SWin and PVT.

“We found that PaCa outperformed SWin and PVT in every way,” Wu says. “PaCa was better at classifying objects in images, better at identifying objects in images, and better at segmentation — essentially outlining the boundaries of objects in images. It was also more efficient, meaning that it was able to perform those tasks more quickly than the other ViTs.

“The next step for us is to scale up PaCa by training on larger, foundational data sets.”

The paper, “PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers,” will be presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition, being held June 18-22 in Vancouver, Canada. First author of the paper is Ryan Grainger, a Ph.D. student at NC State. The paper was co-authored by Thomas Paniagua, a Ph.D. student at NC State; Xi Song, an independent researcher; and Naresh Cuntoor and Mun Wai Lee of BlueHalo.

The work was done with support from the Office of the Director of National Intelligence, under contract number 2021-21040700003; the U.S. Army Research Office, under grants W911NF1810295 and W911NF2210010; and the National Science Foundation, under grants 1909644, 1822477, 2024688 and 2013451.

New method improves efficiency of ‘imaginative and prescient transformer’ AI systems

The post New method improves efficiency of ‘imaginative and prescient transformer’ AI systems first appeared on Latest Movs.

" } ["summary"]=> string(1115) "

Journal Reference: Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, Tianfu Wu. PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers. submitted to arXiv, 2023 [abstract] Transformers are among the most powerful existing AI models. For example, ChatGPT is an AI that uses transformer architecture, but the inputs used to train it are language. ... Read more

The post New method improves efficiency of ‘imaginative and prescient transformer’ AI systems first appeared on Latest Movs.

" ["atom_content"]=> string(5031) "

Journal Reference:

  1. Ryan Grainger, Thomas Paniagua, Xi Song, Naresh Cuntoor, Mun Wai Lee, Tianfu Wu. PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers. submitted to arXiv, 2023 [abstract]

Transformers are among the most powerful existing AI models. For example, ChatGPT is an AI that uses transformer architecture, but the inputs used to train it are language. ViTs are transformer-based AI that are trained using visual inputs. For example, ViTs could be used to detect and categorize objects in an image, such as identifying all of the cars or all of the pedestrians in an image.

However, ViTs face two challenges.

First, transformer models are very complex. Relative to the amount of data being plugged into the AI, transformer models require a significant amount of computational power and use a large amount of memory. This is particularly problematic for ViTs, because images contain so much data.

Second, it is difficult for users to understand exactly how ViTs make decisions. For example, you might have trained a ViT to identify dogs in an image. But it’s not entirely clear how the ViT is determining what is a dog and what is not. Depending on the application, understanding the ViT’s decision-making process, also known as its model interpretability, can be very important.

The new ViT methodology, called “Patch-to-Cluster attention” (PaCa), addresses both challenges.

“We address the challenge related to computational and memory demands by using clustering techniques, which allow the transformer architecture to better identify and focus on objects in an image,” says Tianfu Wu, corresponding author of a paper on the work and an associate professor of electrical and computer engineering at North Carolina State University. “Clustering is when the AI lumps sections of the image together, based on similarities it finds in the image data. This significantly reduces computational demands on the system. Before clustering, computational demands for a ViT are quadratic. For example, if the system breaks an image down into 100 smaller units, it would need to compare all 100 units to each other — which would be 10,000 complex functions.

“By clustering, we’re able to make this a linear process, where each smaller unit only needs to be compared to a predetermined number of clusters. Let’s say you tell the system to establish 10 clusters; that would only be 1,000 complex functions,” Wu says.

“Clustering also allows us to address model interpretability, because we can look at how it created the clusters in the first place. What features did it decide were important when lumping these sections of data together? And because the AI is only creating a small number of clusters, we can look at those pretty easily.”

The researchers did comprehensive testing of PaCa, comparing it to two state-of-the-art ViTs called SWin and PVT.

“We found that PaCa outperformed SWin and PVT in every way,” Wu says. “PaCa was better at classifying objects in images, better at identifying objects in images, and better at segmentation — essentially outlining the boundaries of objects in images. It was also more efficient, meaning that it was able to perform those tasks more quickly than the other ViTs.

“The next step for us is to scale up PaCa by training on larger, foundational data sets.”

The paper, “PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers,” will be presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition, being held June 18-22 in Vancouver, Canada. First author of the paper is Ryan Grainger, a Ph.D. student at NC State. The paper was co-authored by Thomas Paniagua, a Ph.D. student at NC State; Xi Song, an independent researcher; and Naresh Cuntoor and Mun Wai Lee of BlueHalo.

The work was done with support from the Office of the Director of National Intelligence, under contract number 2021-21040700003; the U.S. Army Research Office, under grants W911NF1810295 and W911NF2210010; and the National Science Foundation, under grants 1909644, 1822477, 2024688 and 2013451.

New method improves efficiency of ‘imaginative and prescient transformer’ AI systems

The post New method improves efficiency of ‘imaginative and prescient transformer’ AI systems first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685754184) } [3]=> array(11) { ["title"]=> string(49) "Impact of ancient earthquake revealed – NovLink" ["link"]=> string(97) "https://latestmovs.packagingnewsonline.com/science/impact-of-ancient-earthquake-revealed-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 20:54:39 +0000" ["category"]=> string(7) "science" ["guid"]=> string(97) "https://latestmovs.packagingnewsonline.com/science/impact-of-ancient-earthquake-revealed-novlink/" ["description"]=> string(940) "

Journal Reference: Felix Vaux, Ceridwen I. Fraser, Dave Craw, Stephen Read, Jonathan M. Waters. Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts. Journal of The Royal Society Interface, 2023; 20 (202) DOI: 10.1098/rsif.2023.0105 The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data ... Read more

The post Impact of ancient earthquake revealed – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(5513) "

Journal Reference:

  1. Felix Vaux, Ceridwen I. Fraser, Dave Craw, Stephen Read, Jonathan M. Waters. Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts. Journal of The Royal Society Interface, 2023; 20 (202) DOI: 10.1098/rsif.2023.0105

The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data from laser mapping and kelp genetics.

Co-author Professor Jon Waters, of the Department of Zoology, says the study gives new insights into the changes in Aotearoa’s landscapes and the recent history of earthquake impacts.

“In a geologically well studied country like New Zealand, there is still a lot to learn about our history of earthquakes and changing landforms,” he says.

The paper, just published in Journal of the Royal Society Interface, utilised LiDAR mapping (remote sensing technology used to model ground elevation) and genetic analysis of bull kelp from the uplifted section of coast.

The team identified a previously unrecognised area of uplifted rocky coastline — a bench about 1m above sea level — and a genetic anomaly in kelp below that bench. The kelp’s genetics indicate the species went extinct in the area following an earthquake, before being recolonised by kelp which drifted from 300km south.

The group believe the earthquake responsible occurred about 2000 to 3000 years ago, showing the potential for kelp to record geological disturbance events.

“The area is close to a well-known active fault and several big, past earthquakes have been well quantified by other researchers, but this coastal uplift zone was not previously known — the evidence for it is extremely clear now we’ve had a chance to look more closely.

“Rarangi is also a very popular summer swimming spot, rather than some obscure or remote location, and the evidence of coastal uplift was hiding in plain sight,” Professor Waters says.

The research is the latest output from the group’s Marsden-funded project assessing earthquake impacts on coastal species.

“Our work uses a combination of genetics and geology, and it’s quite exciting that these combined approaches have allowed us to pinpoint a previously unknown site of coastal uplift in New Zealand.

“This work serves to highlight again just how dynamic our country is — and how earthquake uplift leaves long lasting signatures in our coastal species.”

By combining the scientific powerhouses of genetics and geology, University of Otago researchers have identified a new area of coastal uplift, which had been hiding in plain sight.

The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data from laser mapping and kelp genetics.

Co-author Professor Jon Waters, of the Department of Zoology, says the study gives new insights into the changes in Aotearoa’s landscapes and the recent history of earthquake impacts.

“In a geologically well studied country like New Zealand, there is still a lot to learn about our history of earthquakes and changing landforms,” he says.

The paper, just published in Journal of the Royal Society Interface, utilised LiDAR mapping (remote sensing technology used to model ground elevation) and genetic analysis of bull kelp from the uplifted section of coast.

The team identified a previously unrecognised area of uplifted rocky coastline — a bench about 1m above sea level — and a genetic anomaly in kelp below that bench. The kelp’s genetics indicate the species went extinct in the area following an earthquake, before being recolonised by kelp which drifted from 300km south.

The group believe the earthquake responsible occurred about 2000 to 3000 years ago, showing the potential for kelp to record geological disturbance events.

“The area is close to a well-known active fault and several big, past earthquakes have been well quantified by other researchers, but this coastal uplift zone was not previously known — the evidence for it is extremely clear now we’ve had a chance to look more closely.

“Rarangi is also a very popular summer swimming spot, rather than some obscure or remote location, and the evidence of coastal uplift was hiding in plain sight,” Professor Waters says.

The research is the latest output from the group’s Marsden-funded project assessing earthquake impacts on coastal species.

“Our work uses a combination of genetics and geology, and it’s quite exciting that these combined approaches have allowed us to pinpoint a previously unknown site of coastal uplift in New Zealand.

“This work serves to highlight again just how dynamic our country is — and how earthquake uplift leaves long lasting signatures in our coastal species.”

Impact of ancient earthquake revealed – NovLink

The post Impact of ancient earthquake revealed – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(940) "

Journal Reference: Felix Vaux, Ceridwen I. Fraser, Dave Craw, Stephen Read, Jonathan M. Waters. Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts. Journal of The Royal Society Interface, 2023; 20 (202) DOI: 10.1098/rsif.2023.0105 The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data ... Read more

The post Impact of ancient earthquake revealed – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(5513) "

Journal Reference:

  1. Felix Vaux, Ceridwen I. Fraser, Dave Craw, Stephen Read, Jonathan M. Waters. Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts. Journal of The Royal Society Interface, 2023; 20 (202) DOI: 10.1098/rsif.2023.0105

The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data from laser mapping and kelp genetics.

Co-author Professor Jon Waters, of the Department of Zoology, says the study gives new insights into the changes in Aotearoa’s landscapes and the recent history of earthquake impacts.

“In a geologically well studied country like New Zealand, there is still a lot to learn about our history of earthquakes and changing landforms,” he says.

The paper, just published in Journal of the Royal Society Interface, utilised LiDAR mapping (remote sensing technology used to model ground elevation) and genetic analysis of bull kelp from the uplifted section of coast.

The team identified a previously unrecognised area of uplifted rocky coastline — a bench about 1m above sea level — and a genetic anomaly in kelp below that bench. The kelp’s genetics indicate the species went extinct in the area following an earthquake, before being recolonised by kelp which drifted from 300km south.

The group believe the earthquake responsible occurred about 2000 to 3000 years ago, showing the potential for kelp to record geological disturbance events.

“The area is close to a well-known active fault and several big, past earthquakes have been well quantified by other researchers, but this coastal uplift zone was not previously known — the evidence for it is extremely clear now we’ve had a chance to look more closely.

“Rarangi is also a very popular summer swimming spot, rather than some obscure or remote location, and the evidence of coastal uplift was hiding in plain sight,” Professor Waters says.

The research is the latest output from the group’s Marsden-funded project assessing earthquake impacts on coastal species.

“Our work uses a combination of genetics and geology, and it’s quite exciting that these combined approaches have allowed us to pinpoint a previously unknown site of coastal uplift in New Zealand.

“This work serves to highlight again just how dynamic our country is — and how earthquake uplift leaves long lasting signatures in our coastal species.”

By combining the scientific powerhouses of genetics and geology, University of Otago researchers have identified a new area of coastal uplift, which had been hiding in plain sight.

The previously unknown region of earthquake uplift, in Rarangi, Marlborough, was discovered using a combination of new data from laser mapping and kelp genetics.

Co-author Professor Jon Waters, of the Department of Zoology, says the study gives new insights into the changes in Aotearoa’s landscapes and the recent history of earthquake impacts.

“In a geologically well studied country like New Zealand, there is still a lot to learn about our history of earthquakes and changing landforms,” he says.

The paper, just published in Journal of the Royal Society Interface, utilised LiDAR mapping (remote sensing technology used to model ground elevation) and genetic analysis of bull kelp from the uplifted section of coast.

The team identified a previously unrecognised area of uplifted rocky coastline — a bench about 1m above sea level — and a genetic anomaly in kelp below that bench. The kelp’s genetics indicate the species went extinct in the area following an earthquake, before being recolonised by kelp which drifted from 300km south.

The group believe the earthquake responsible occurred about 2000 to 3000 years ago, showing the potential for kelp to record geological disturbance events.

“The area is close to a well-known active fault and several big, past earthquakes have been well quantified by other researchers, but this coastal uplift zone was not previously known — the evidence for it is extremely clear now we’ve had a chance to look more closely.

“Rarangi is also a very popular summer swimming spot, rather than some obscure or remote location, and the evidence of coastal uplift was hiding in plain sight,” Professor Waters says.

The research is the latest output from the group’s Marsden-funded project assessing earthquake impacts on coastal species.

“Our work uses a combination of genetics and geology, and it’s quite exciting that these combined approaches have allowed us to pinpoint a previously unknown site of coastal uplift in New Zealand.

“This work serves to highlight again just how dynamic our country is — and how earthquake uplift leaves long lasting signatures in our coastal species.”

Impact of ancient earthquake revealed – NovLink

The post Impact of ancient earthquake revealed – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685739279) } [4]=> array(11) { ["title"]=> string(88) "Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink" ["link"]=> string(130) "https://latestmovs.packagingnewsonline.com/science/biological-cleanup-discovered-for-certain-eternally-chemical-compounds-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 16:42:35 +0000" ["category"]=> string(7) "science" ["guid"]=> string(130) "https://latestmovs.packagingnewsonline.com/science/biological-cleanup-discovered-for-certain-eternally-chemical-compounds-novlink/" ["description"]=> string(1142) "

Journal Reference: Bosen Jin, Huaqing Liu, Shun Che, Jinyu Gao, Yaochun Yu, Jinyong Liu, Yujie Men. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water, 2023; 1 (5): 451 DOI: 10.1038/s44221-023-00077-6 These bacteria destroy a subgroup of per- and poly-fluoroalkyl substances, or PFAS, that have one or more chlorine atoms within ... Read more

The post Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(4391) "

Journal Reference:

  1. Bosen Jin, Huaqing Liu, Shun Che, Jinyu Gao, Yaochun Yu, Jinyong Liu, Yujie Men. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water, 2023; 1 (5): 451 DOI: 10.1038/s44221-023-00077-6

These bacteria destroy a subgroup of per- and poly-fluoroalkyl substances, or PFAS, that have one or more chlorine atoms within their chemical structure, Yujie Men, an assistant professor in the Bourns College of Engineering, and her UCR colleagues, reported in the journal Natural Water.

Unhealthful forever chemicals persist in the environment for decades or much longer because of their unusually strong carbon-to-fluorine bonds. Remarkably, the UCR team found that the bacteria cleave the pollutant’s chlorine-carbon bonds, which starts a chain of reactions that destroy the forever chemical structures, rendering them harmless.

“What we discovered is that bacteria can do carbon-chlorine bond cleavage first, generating unstable intermediates,” Men said. “And then those unstable intermediates undergo spontaneous defluorination, which is the cleavage of the carbon-fluorine bond.”

Chlorinated PFAS are a large group in the forever chemical family of thousands of compounds. They include a variety of non-flammable hydraulic fluids used in industry and compounds used to make chemically stable films that serve as moisture barriers in various industrial, packaging, and electronic applications.

The two bacteria species — Desulfovibrio aminophilus and Sporomusa sphaeroides — identified by Men’s group are naturally occurring and are known to live in the subterranean microbiomes where groundwater may be contaminated with PFAS. For expedited cleanups, an inexpensive nutrient, such as methanol, could be injected into groundwater to promote bacterial growth. This would greatly increase the bacteria’s presence to destroy the pollutants more effectively, Men said. If the bacteria are not already present, the contaminated water could be inoculated with one of the bacterium species.

The title of the paper is “Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dichlorination.” Men is the corresponding author and Bosen Jin, a UCR chemical and environmental engineering graduate student, is the lead author. Other UCR co-authors are postdoc Jinyu Gao; former postdoc Huaqing Liu; former graduate students Shun Che and Yaochun Yu; and Associate Professor Jinyong Liu.

The study expands on earlier work by Men, in which she demonstrated that microbes can breakdown a stubborn class of PFAS called fluorinated carboxylic acids.

Microbes have long been used for biological cleanup of oil spills and other industrial pollutants, including the industrial solvent trichloroethylene or TCE, which Men has studied.

But what’s known about using microorganisms to clean up PFAS is still in its infancy, Men said. Her discovery shows great promise because biological treatments, if effective pollutant-eating microbes are available, are generally less costly and more environmentally friendly than chemical treatments. Pollutant-eating microbes can also be injected into difficult-to-reach locations underground.

Men’s latest PFAS study comes as the U.S. Environmental Protection Agency is promulgating new regulations to spur cleanups of PFAS-contaminated groundwater sites throughout the nation because these chemicals have been linked to a host of ill health effects, including cancer, kidney disease, and hormone disruptions.

Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink

The post Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1142) "

Journal Reference: Bosen Jin, Huaqing Liu, Shun Che, Jinyu Gao, Yaochun Yu, Jinyong Liu, Yujie Men. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water, 2023; 1 (5): 451 DOI: 10.1038/s44221-023-00077-6 These bacteria destroy a subgroup of per- and poly-fluoroalkyl substances, or PFAS, that have one or more chlorine atoms within ... Read more

The post Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(4391) "

Journal Reference:

  1. Bosen Jin, Huaqing Liu, Shun Che, Jinyu Gao, Yaochun Yu, Jinyong Liu, Yujie Men. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water, 2023; 1 (5): 451 DOI: 10.1038/s44221-023-00077-6

These bacteria destroy a subgroup of per- and poly-fluoroalkyl substances, or PFAS, that have one or more chlorine atoms within their chemical structure, Yujie Men, an assistant professor in the Bourns College of Engineering, and her UCR colleagues, reported in the journal Natural Water.

Unhealthful forever chemicals persist in the environment for decades or much longer because of their unusually strong carbon-to-fluorine bonds. Remarkably, the UCR team found that the bacteria cleave the pollutant’s chlorine-carbon bonds, which starts a chain of reactions that destroy the forever chemical structures, rendering them harmless.

“What we discovered is that bacteria can do carbon-chlorine bond cleavage first, generating unstable intermediates,” Men said. “And then those unstable intermediates undergo spontaneous defluorination, which is the cleavage of the carbon-fluorine bond.”

Chlorinated PFAS are a large group in the forever chemical family of thousands of compounds. They include a variety of non-flammable hydraulic fluids used in industry and compounds used to make chemically stable films that serve as moisture barriers in various industrial, packaging, and electronic applications.

The two bacteria species — Desulfovibrio aminophilus and Sporomusa sphaeroides — identified by Men’s group are naturally occurring and are known to live in the subterranean microbiomes where groundwater may be contaminated with PFAS. For expedited cleanups, an inexpensive nutrient, such as methanol, could be injected into groundwater to promote bacterial growth. This would greatly increase the bacteria’s presence to destroy the pollutants more effectively, Men said. If the bacteria are not already present, the contaminated water could be inoculated with one of the bacterium species.

The title of the paper is “Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dichlorination.” Men is the corresponding author and Bosen Jin, a UCR chemical and environmental engineering graduate student, is the lead author. Other UCR co-authors are postdoc Jinyu Gao; former postdoc Huaqing Liu; former graduate students Shun Che and Yaochun Yu; and Associate Professor Jinyong Liu.

The study expands on earlier work by Men, in which she demonstrated that microbes can breakdown a stubborn class of PFAS called fluorinated carboxylic acids.

Microbes have long been used for biological cleanup of oil spills and other industrial pollutants, including the industrial solvent trichloroethylene or TCE, which Men has studied.

But what’s known about using microorganisms to clean up PFAS is still in its infancy, Men said. Her discovery shows great promise because biological treatments, if effective pollutant-eating microbes are available, are generally less costly and more environmentally friendly than chemical treatments. Pollutant-eating microbes can also be injected into difficult-to-reach locations underground.

Men’s latest PFAS study comes as the U.S. Environmental Protection Agency is promulgating new regulations to spur cleanups of PFAS-contaminated groundwater sites throughout the nation because these chemicals have been linked to a host of ill health effects, including cancer, kidney disease, and hormone disruptions.

Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink

The post Biological cleanup discovered for certain ‘eternally chemical compounds’ – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685724155) } [5]=> array(11) { ["title"]=> string(92) "A protein mines, sorts rare earths better than people, paving way for green tech – NovLink" ["link"]=> string(138) "https://latestmovs.packagingnewsonline.com/science/a-protein-mines-sorts-rare-earths-better-than-people-paving-way-for-green-tech-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 12:10:27 +0000" ["category"]=> string(7) "science" ["guid"]=> string(138) "https://latestmovs.packagingnewsonline.com/science/a-protein-mines-sorts-rare-earths-better-than-people-paving-way-for-green-tech-novlink/" ["description"]=> string(1137) "

Journal Reference: Mattocks, J.A., Jung, J.J., Lin, CY. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 2023 DOI: 10.1038/s41586-023-05945-5 Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or ... Read more

The post A protein mines, sorts rare earths better than people, paving way for green tech – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(9840) "

Journal Reference:

  1. Mattocks, J.A., Jung, J.J., Lin, CY. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 2023 DOI: 10.1038/s41586-023-05945-5

Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or “dimerize,” when it is bound to certain rare earths, but prefer to remain a single unit, or “monomer,” when bound to others.

By figuring out how this molecular handshake works at the atomic level, the researchers have found a way to separate these similar metals from one another quickly, efficiently, and under normal room temperature conditions. This strategy could lead to more efficient, greener mining and recycling practices for the entire tech sector, the researchers state.

“Biology manages to differentiate rare earths from all the other metals out there — and now, we can see how it even differentiates between the rare earths it finds useful and the ones it doesn’t,” said Joseph Cotruvo Jr., associate professor of chemistry at Penn State and lead author on a paper about the discovery published today (May 31) in the journal Nature. “We’re showing how we can adapt these approaches for rare earth recovery and separation.”

Rare earth elements, which include the lanthanide metals, are in fact relatively abundant, Cotruvo explained, but they are what mineralogists call “dispersed,” meaning they’re mostly scattered throughout the planet in low concentrations.

“If you can harvest rare earths from devices that we already have, then we may not be so reliant on mining it in the first place,” Cotruvo said. However, he added that regardless of source, the challenge of separating one rare earth from another to get a pure substance remains.

“Whether you are mining the metals from rock or from devices, you are still going to need to perform the separation. Our method, in theory, is applicable for any way in which rare earths are harvested,” he said.

All the same — and completely different

In simple terms, rare earths are 15 elements on the periodic table — the lanthanides, with atomic numbers 57 to 71 — and two other elements with similar properties that are often grouped with them. The metals behave similarly chemically, have similar sizes, and, for those reasons, they often are found together in the Earth’s crust. However, each one has distinct applications in technologies.

Conventional rare earth separation practices require using large amounts of toxic chemicals like kerosene and phosphonates, similar to chemicals that are commonly used in insecticides, herbicides and flame retardants, Cotruvo explained. The separation process requires dozens or even hundreds of steps, using these highly toxic chemicals, to achieve high-purity individual rare earth oxides.

“There is getting them out of the rock, which is one part of the problem, but one for which many solutions exist,” Cotruvo said. “But you run into a second problem once they are out, because you need to separate multiple rare earths from one another. This is the biggest and most interesting challenge, discriminating between the individual rare earths, because they are so alike. We’ve taken a natural protein, which we call lanmodulin or LanM, and engineered it to do just that.”

Learning from nature

Cotruvo and his lab turned to nature to find an alternative to the conventional solvent-based separation process, because biology has already been harvesting and harnessing the power of rare earths for millennia, especially in a class of bacteria called “methylotrophs” that often are found on plant leaves and in soil and water and play an important role in how carbon moves through the environment.

Six years ago, the lab isolated lanmodulin from one of these bacteria, and showed that it was unmatched — over 100 million times better — in its ability to bind lanthanides over common metals like calcium. Through subsequent work they showed that it was able to purify rare earths as a group from dozens of other metals in mixtures that were too complex for traditional rare earth extraction methods. However, the protein was less good at discriminating between the individual rare earths.

Cotruvo explained that for the new study detailed in Nature, the team identified hundreds of other natural proteins that looked roughly like the first lanmodulin but homed in on one that was different enough — 70% different — that they suspected it would have some distinct properties. This protein is found naturally in a bacterium (Hansschlegelia quercus) isolated from English oak buds.

The researchers found that the lanmodulin from this bacterium exhibited strong capabilities to differentiate between rare earths. Their studies indicated that this differentiation came from an ability of the protein to dimerize and perform a kind of handshake. When the protein binds one of the lighter lanthanides, like neodymium, the handshake (dimer) is strong. By contrast, when the protein binds to a heavier lanthanide, like dysprosium, the handshake is much weaker, such that the protein favors the monomer form.

“This was surprising because these metals are very similar in size,” Cotruvo said. “This protein has the ability to differentiate at a scale that is unimaginable to most of us — a few trillionths of a meter, a difference that is less than a tenth of the diameter of an atom.”

Fine-tuning rare earth separations

To visualize the process at such a small scale, the researchers teamed up with Amie Boal, Penn State professor of chemistry, biochemistry and molecular biology, who is a co-author on the paper. Boal’s lab specializes in a technique called X-ray crystallography, which allows for high-resolution molecular imaging.

The researchers determined that the protein’s ability to dimerize dependent on the lanthanide to which it was bound came down to a single amino acid — 1% of the whole protein — that occupied a different position with lanthanum (which, like neodymium, is a light lanthanide) than with dysprosium.

Because this amino acid is part of a network of interconnected amino acids at the interface with the other monomer, this shift altered how the two protein units interacted. When an amino acid that is a key player in this network was removed, the protein was much less sensitive to rare earth identity and size. The findings revealed a new, natural principle for fine-tuning rare earth separations, based on propagation of miniscule differences at the rare earth binding site to the dimer interface.

Using this knowledge, their collaborators at Lawrence Livermore National Laboratory showed that the protein could be tethered to small beads in a column, and that it could separate the most important components of permanent magnets, neodymium and dysprosium, in a single step, at room temperature and without any organic solvents.

“While we are by no means the first scientists to recognize that metal-sensitive dimerization could be a way of separating very similar metals, mostly with synthetic molecules,” Cotruvo said, “this is the first time that this phenomenon has been observed in nature with the lanthanides. This is basic science with applied outcomes. We’re revealing what nature is doing and it’s teaching us what we can do better as chemists.”

Cotruvo believes that the concept of binding rare earths at a molecular interface, such that dimerization is dependent on the exact size of the metal ion, can be a powerful approach for accomplishing challenging separations.

“This is the tip of the iceberg,” he said. “With further optimization of this phenomenon, the toughest problem of all — efficient separation of rare earths that are right next to each other on the periodic table — may be within reach.”

A patent application was filed by Penn State based on this work and the team is currently scaling up operations, fine-tuning and streamlining the protein with the goal of commercializing the process.

Other Penn State co-authors are Joseph Mattocks, Jonathan Jung, Chi-Yun Lin, Neela Yennawar, Emily Featherston and Timothy Hamilton. Ziye Dong, Christina Kang-Yun and Dan Park of the Lawrence Livermore National Laboratory also co-authored the paper.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the National Institutes of Health, the Jane Coffin Childs Memorial Fund for Medical Research, and the Critical Materials Institute, an Energy Innovation Hub funded by the DOE, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office. Part of the work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory.

A protein mines, sorts rare earths better than people, paving way for green tech – NovLink

The post A protein mines, sorts rare earths better than people, paving way for green tech – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1137) "

Journal Reference: Mattocks, J.A., Jung, J.J., Lin, CY. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 2023 DOI: 10.1038/s41586-023-05945-5 Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or ... Read more

The post A protein mines, sorts rare earths better than people, paving way for green tech – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(9840) "

Journal Reference:

  1. Mattocks, J.A., Jung, J.J., Lin, CY. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 2023 DOI: 10.1038/s41586-023-05945-5

Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or “dimerize,” when it is bound to certain rare earths, but prefer to remain a single unit, or “monomer,” when bound to others.

By figuring out how this molecular handshake works at the atomic level, the researchers have found a way to separate these similar metals from one another quickly, efficiently, and under normal room temperature conditions. This strategy could lead to more efficient, greener mining and recycling practices for the entire tech sector, the researchers state.

“Biology manages to differentiate rare earths from all the other metals out there — and now, we can see how it even differentiates between the rare earths it finds useful and the ones it doesn’t,” said Joseph Cotruvo Jr., associate professor of chemistry at Penn State and lead author on a paper about the discovery published today (May 31) in the journal Nature. “We’re showing how we can adapt these approaches for rare earth recovery and separation.”

Rare earth elements, which include the lanthanide metals, are in fact relatively abundant, Cotruvo explained, but they are what mineralogists call “dispersed,” meaning they’re mostly scattered throughout the planet in low concentrations.

“If you can harvest rare earths from devices that we already have, then we may not be so reliant on mining it in the first place,” Cotruvo said. However, he added that regardless of source, the challenge of separating one rare earth from another to get a pure substance remains.

“Whether you are mining the metals from rock or from devices, you are still going to need to perform the separation. Our method, in theory, is applicable for any way in which rare earths are harvested,” he said.

All the same — and completely different

In simple terms, rare earths are 15 elements on the periodic table — the lanthanides, with atomic numbers 57 to 71 — and two other elements with similar properties that are often grouped with them. The metals behave similarly chemically, have similar sizes, and, for those reasons, they often are found together in the Earth’s crust. However, each one has distinct applications in technologies.

Conventional rare earth separation practices require using large amounts of toxic chemicals like kerosene and phosphonates, similar to chemicals that are commonly used in insecticides, herbicides and flame retardants, Cotruvo explained. The separation process requires dozens or even hundreds of steps, using these highly toxic chemicals, to achieve high-purity individual rare earth oxides.

“There is getting them out of the rock, which is one part of the problem, but one for which many solutions exist,” Cotruvo said. “But you run into a second problem once they are out, because you need to separate multiple rare earths from one another. This is the biggest and most interesting challenge, discriminating between the individual rare earths, because they are so alike. We’ve taken a natural protein, which we call lanmodulin or LanM, and engineered it to do just that.”

Learning from nature

Cotruvo and his lab turned to nature to find an alternative to the conventional solvent-based separation process, because biology has already been harvesting and harnessing the power of rare earths for millennia, especially in a class of bacteria called “methylotrophs” that often are found on plant leaves and in soil and water and play an important role in how carbon moves through the environment.

Six years ago, the lab isolated lanmodulin from one of these bacteria, and showed that it was unmatched — over 100 million times better — in its ability to bind lanthanides over common metals like calcium. Through subsequent work they showed that it was able to purify rare earths as a group from dozens of other metals in mixtures that were too complex for traditional rare earth extraction methods. However, the protein was less good at discriminating between the individual rare earths.

Cotruvo explained that for the new study detailed in Nature, the team identified hundreds of other natural proteins that looked roughly like the first lanmodulin but homed in on one that was different enough — 70% different — that they suspected it would have some distinct properties. This protein is found naturally in a bacterium (Hansschlegelia quercus) isolated from English oak buds.

The researchers found that the lanmodulin from this bacterium exhibited strong capabilities to differentiate between rare earths. Their studies indicated that this differentiation came from an ability of the protein to dimerize and perform a kind of handshake. When the protein binds one of the lighter lanthanides, like neodymium, the handshake (dimer) is strong. By contrast, when the protein binds to a heavier lanthanide, like dysprosium, the handshake is much weaker, such that the protein favors the monomer form.

“This was surprising because these metals are very similar in size,” Cotruvo said. “This protein has the ability to differentiate at a scale that is unimaginable to most of us — a few trillionths of a meter, a difference that is less than a tenth of the diameter of an atom.”

Fine-tuning rare earth separations

To visualize the process at such a small scale, the researchers teamed up with Amie Boal, Penn State professor of chemistry, biochemistry and molecular biology, who is a co-author on the paper. Boal’s lab specializes in a technique called X-ray crystallography, which allows for high-resolution molecular imaging.

The researchers determined that the protein’s ability to dimerize dependent on the lanthanide to which it was bound came down to a single amino acid — 1% of the whole protein — that occupied a different position with lanthanum (which, like neodymium, is a light lanthanide) than with dysprosium.

Because this amino acid is part of a network of interconnected amino acids at the interface with the other monomer, this shift altered how the two protein units interacted. When an amino acid that is a key player in this network was removed, the protein was much less sensitive to rare earth identity and size. The findings revealed a new, natural principle for fine-tuning rare earth separations, based on propagation of miniscule differences at the rare earth binding site to the dimer interface.

Using this knowledge, their collaborators at Lawrence Livermore National Laboratory showed that the protein could be tethered to small beads in a column, and that it could separate the most important components of permanent magnets, neodymium and dysprosium, in a single step, at room temperature and without any organic solvents.

“While we are by no means the first scientists to recognize that metal-sensitive dimerization could be a way of separating very similar metals, mostly with synthetic molecules,” Cotruvo said, “this is the first time that this phenomenon has been observed in nature with the lanthanides. This is basic science with applied outcomes. We’re revealing what nature is doing and it’s teaching us what we can do better as chemists.”

Cotruvo believes that the concept of binding rare earths at a molecular interface, such that dimerization is dependent on the exact size of the metal ion, can be a powerful approach for accomplishing challenging separations.

“This is the tip of the iceberg,” he said. “With further optimization of this phenomenon, the toughest problem of all — efficient separation of rare earths that are right next to each other on the periodic table — may be within reach.”

A patent application was filed by Penn State based on this work and the team is currently scaling up operations, fine-tuning and streamlining the protein with the goal of commercializing the process.

Other Penn State co-authors are Joseph Mattocks, Jonathan Jung, Chi-Yun Lin, Neela Yennawar, Emily Featherston and Timothy Hamilton. Ziye Dong, Christina Kang-Yun and Dan Park of the Lawrence Livermore National Laboratory also co-authored the paper.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the National Institutes of Health, the Jane Coffin Childs Memorial Fund for Medical Research, and the Critical Materials Institute, an Energy Innovation Hub funded by the DOE, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office. Part of the work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory.

A protein mines, sorts rare earths better than people, paving way for green tech – NovLink

The post A protein mines, sorts rare earths better than people, paving way for green tech – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685707827) } [6]=> array(11) { ["title"]=> string(68) "Windshield washer fluid is an unexpected emission source – NovLink" ["link"]=> string(116) "https://latestmovs.packagingnewsonline.com/science/windshield-washer-fluid-is-an-unexpected-emission-source-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 08:21:12 +0000" ["category"]=> string(7) "science" ["guid"]=> string(116) "https://latestmovs.packagingnewsonline.com/science/windshield-washer-fluid-is-an-unexpected-emission-source-novlink/" ["description"]=> string(1033) "

Journal Reference: Samuel J. Cliff, Alastair C. Lewis, Marvin D. Shaw, James D. Lee, Michael Flynn, Stephen J. Andrews, James R. Hopkins, Ruth M. Purvis, Amber M. Yeoman. Unreported VOC Emissions from Road Transport Including from Electric Vehicles. Environmental Science & Technology, 2023; 57 (21): 8026 DOI: 10.1021/acs.est.3c00845 Cars’ average carbon dioxide emissions have dropped ... Read more

The post Windshield washer fluid is an unexpected emission source – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(3498) "

Journal Reference:

  1. Samuel J. Cliff, Alastair C. Lewis, Marvin D. Shaw, James D. Lee, Michael Flynn, Stephen J. Andrews, James R. Hopkins, Ruth M. Purvis, Amber M. Yeoman. Unreported VOC Emissions from Road Transport Including from Electric Vehicles. Environmental Science & Technology, 2023; 57 (21): 8026 DOI: 10.1021/acs.est.3c00845

Cars’ average carbon dioxide emissions have dropped by 25% since the early 2000s, according to the U.S. Environmental Protection Agency, but this gas only accounts for part of the total. Another important component of emissions is volatile organic compounds (VOCs), a broad classification of carbon-based molecules that are easily vaporized and that can contribute to ozone formation. While some VOCs are released in exhaust, others may arise from an unexpected source — the products used for “car care,” such as windshield washer fluid. Estimates from a national inventory of manufacturer statistics in the U.K. showed that car-care products could be an even greater source of VOCs than exhaust, but these numbers had never been verified experimentally. So, Samuel Cliff and coworkers decided to measure the amounts of vaporized windshield washer fluid ingredients from cars on a real-world road and compare it to the inventory estimates.

To measure the VOCs actually emitted by vehicles, the researchers outfitted a van with several instruments, including a mass spectrometer, and parked it near a busy roadway. By comparing the van’s measurements with those from a university site with minimal traffic influence, they calculated the average amount of vapor given off per car for each kilometer traveled for several key VOCs.

The measured values matched inventory estimates for aromatic compounds that are commonly monitored and regulated, but those for alcohols — key ingredients in windshield washer fluid — far exceeded inventory numbers. In fact, the release of two alcohols, ethanol and methanol, was nearly twice the amount of all VOCs released in exhaust. The discrepancy in alcohol emissions could be accounted for by including solvents from car-care products in the inventory estimations, suggesting that these products are a significant, if unexpected, source of vehicle-derived pollutants. The researchers say that this finding has implications for future regulatory policy especially as drivers transition to electric vehicles, which may have fewer emissions from fuels but will still need clean windshields.

Windshield washer fluid is an unexpected emission source – NovLink

The post Windshield washer fluid is an unexpected emission source – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1033) "

Journal Reference: Samuel J. Cliff, Alastair C. Lewis, Marvin D. Shaw, James D. Lee, Michael Flynn, Stephen J. Andrews, James R. Hopkins, Ruth M. Purvis, Amber M. Yeoman. Unreported VOC Emissions from Road Transport Including from Electric Vehicles. Environmental Science & Technology, 2023; 57 (21): 8026 DOI: 10.1021/acs.est.3c00845 Cars’ average carbon dioxide emissions have dropped ... Read more

The post Windshield washer fluid is an unexpected emission source – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(3498) "

Journal Reference:

  1. Samuel J. Cliff, Alastair C. Lewis, Marvin D. Shaw, James D. Lee, Michael Flynn, Stephen J. Andrews, James R. Hopkins, Ruth M. Purvis, Amber M. Yeoman. Unreported VOC Emissions from Road Transport Including from Electric Vehicles. Environmental Science & Technology, 2023; 57 (21): 8026 DOI: 10.1021/acs.est.3c00845

Cars’ average carbon dioxide emissions have dropped by 25% since the early 2000s, according to the U.S. Environmental Protection Agency, but this gas only accounts for part of the total. Another important component of emissions is volatile organic compounds (VOCs), a broad classification of carbon-based molecules that are easily vaporized and that can contribute to ozone formation. While some VOCs are released in exhaust, others may arise from an unexpected source — the products used for “car care,” such as windshield washer fluid. Estimates from a national inventory of manufacturer statistics in the U.K. showed that car-care products could be an even greater source of VOCs than exhaust, but these numbers had never been verified experimentally. So, Samuel Cliff and coworkers decided to measure the amounts of vaporized windshield washer fluid ingredients from cars on a real-world road and compare it to the inventory estimates.

To measure the VOCs actually emitted by vehicles, the researchers outfitted a van with several instruments, including a mass spectrometer, and parked it near a busy roadway. By comparing the van’s measurements with those from a university site with minimal traffic influence, they calculated the average amount of vapor given off per car for each kilometer traveled for several key VOCs.

The measured values matched inventory estimates for aromatic compounds that are commonly monitored and regulated, but those for alcohols — key ingredients in windshield washer fluid — far exceeded inventory numbers. In fact, the release of two alcohols, ethanol and methanol, was nearly twice the amount of all VOCs released in exhaust. The discrepancy in alcohol emissions could be accounted for by including solvents from car-care products in the inventory estimations, suggesting that these products are a significant, if unexpected, source of vehicle-derived pollutants. The researchers say that this finding has implications for future regulatory policy especially as drivers transition to electric vehicles, which may have fewer emissions from fuels but will still need clean windshields.

Windshield washer fluid is an unexpected emission source – NovLink

The post Windshield washer fluid is an unexpected emission source – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685694072) } [7]=> array(11) { ["title"]=> string(96) "The clams that fell behind, and what they can tell us about evolution and extinction – NovLink" ["link"]=> string(143) "https://latestmovs.packagingnewsonline.com/science/the-clams-that-fell-behind-and-what-they-can-tell-us-about-evolution-and-extinction-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 04:34:56 +0000" ["category"]=> string(7) "science" ["guid"]=> string(143) "https://latestmovs.packagingnewsonline.com/science/the-clams-that-fell-behind-and-what-they-can-tell-us-about-evolution-and-extinction-novlink/" ["description"]=> string(1140) "

Journal Reference: Sharon Zhou, Stewart M. Edie, Katie S. Collins, Nicholas M. A. Crouch, David Jablonski. Cambrian origin but no early burst in functional disparity for Class Bivalvia. Biology Letters, 2023; 19 (5) DOI: 10.1098/rsbl.2023.0157 A new study led by scientists with the University of Chicago examined how bivalves — the group that includes clams, ... Read more

The post The clams that fell behind, and what they can tell us about evolution and extinction – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(6003) "

Journal Reference:

  1. Sharon Zhou, Stewart M. Edie, Katie S. Collins, Nicholas M. A. Crouch, David Jablonski. Cambrian origin but no early burst in functional disparity for Class Bivalvia. Biology Letters, 2023; 19 (5) DOI: 10.1098/rsbl.2023.0157

A new study led by scientists with the University of Chicago examined how bivalves — the group that includes clams, mussels, scallops, and oysters — evolved among many others in the period of rapid evolution known as the Cambrian Explosion. The team found that though many other lineages burst into action and quickly evolved a wide variety of forms and functions, the bivalves lagged behind, perhaps because they took too long to evolve a particular adaptation they needed to flourish.

The study has implications for how we understand evolution and the impact of extinctions, the scientists said.

Shell and high water

A little more than 500 million years ago, the diversity of life on Earth suddenly exploded. Known as the Cambrian Explosion, this dramatic episode saw the emergence of many forms of life that persist today.

Among these were the bivalves — hard-twin-shelled organisms that live on the seafloor. A group of researchers decided to catalogue the rise of the bivalves to see how they fared in a nearly empty sea with a brand-new body design.

The research team, including Stewart Edie (PhD’18) with the Smithsonian’s National Museum of Natural History, Katie Collins with the U.K.’s Natural History Museum, and Sharon Zhou, a fourth-year undergraduate student at UChicago, went through the fossil record and painstakingly examined each known fossil species to get a picture of how the bivalves evolved new forms and ways of living — such as burrowing into the seafloor sediment versus attaching themselves to rocks. “For example, you can look at the shape of the shell and tell if they are likely digging into the seafloor sediment, because they become long and thin for burrowing,” explained Zhou.

They pieced together a comprehensive picture of the bivalves’ evolution — and were surprised.

“You might think that they would take immediate advantage of this new body design and go on to fame and biological fortune,” said David Jablonski, the William R. Kenan Jr. Distinguished Service Professor of Geophysical Sciences at UChicago and co-corresponding author on the paper. “But they didn’t.”

Instead, the bivalves branched out slowly compared to other groups that originated at the time. “It’s kind of amazing they made it through at all,” said Jablonski. “Even after they got their act together and began to diversify about 40 million years in, they never showed a true explosion in species or ecologies.”

One thing they wanted to check was whether this could be a false impression caused by some gap in the fossil record. Collins explained that fossils from that era are difficult to find in the first place — many rocks have since been metamorphized into other rock types — and also hard to identify where they do exist.

However, Edie and Zhou ran a series of tests and computer simulations and found this was unlikely to have affected the results: “We’d need a really extreme simulation to change the pattern we see in the rocks,” said Edie. “It’s much more likely that this slow start was the real story.”

It’s not clear why the bivalves lagged, but one possibility is that they hadn’t yet evolved a key organ that allowed them to take off: an enlarged gill to filter out plankton from water, as so many bivalves do today. By the time they came up with this adaptation, the seafloor was much more crowded. “If you show up early to the dance floor, you can do whatever you want, but if you show up late, it restricts the range of moves,” Jablonski said.

But the bivalves do survive and even thrive today, despite their lag. “It tells us there’s more than one pathway to success, even when you are starting at the very beginning of multicellular life,” said Jablonski.

Scientists are particularly interested in cataloguing these accounts of evolution, because they can suggest how life adapts and radiates in the wake of major disruptions or extinctions. The researchers plan to look at bivalves’ response to extinctions over time and see if similar patterns emerge.

“For all kinds of reasons, we want to understand what it means to repopulate after an extinction — for example, what could happen as a result of the major extinction we are undergoing right now,” said Jablonski.

The study was also a learning experience for Zhou, who is an undergraduate at the University of Chicago.

Zhou intended to major in math, but was hooked on evolutionary biology after she took a course to fulfill UChicago’s Core requirements in the sciences. She spent several years working in Jablonski’s lab, and now plans to attend graduate school in the subject.

“How life happens on earth — to me, that is one of the greatest mysteries we can try to solve,” said Zhou.

UChicago postdoctoral researcher Nicholas Crouch was also a co-author on the paper.

The clams that fell behind, and what they can tell us about evolution and extinction – NovLink

The post The clams that fell behind, and what they can tell us about evolution and extinction – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1140) "

Journal Reference: Sharon Zhou, Stewart M. Edie, Katie S. Collins, Nicholas M. A. Crouch, David Jablonski. Cambrian origin but no early burst in functional disparity for Class Bivalvia. Biology Letters, 2023; 19 (5) DOI: 10.1098/rsbl.2023.0157 A new study led by scientists with the University of Chicago examined how bivalves — the group that includes clams, ... Read more

The post The clams that fell behind, and what they can tell us about evolution and extinction – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(6003) "

Journal Reference:

  1. Sharon Zhou, Stewart M. Edie, Katie S. Collins, Nicholas M. A. Crouch, David Jablonski. Cambrian origin but no early burst in functional disparity for Class Bivalvia. Biology Letters, 2023; 19 (5) DOI: 10.1098/rsbl.2023.0157

A new study led by scientists with the University of Chicago examined how bivalves — the group that includes clams, mussels, scallops, and oysters — evolved among many others in the period of rapid evolution known as the Cambrian Explosion. The team found that though many other lineages burst into action and quickly evolved a wide variety of forms and functions, the bivalves lagged behind, perhaps because they took too long to evolve a particular adaptation they needed to flourish.

The study has implications for how we understand evolution and the impact of extinctions, the scientists said.

Shell and high water

A little more than 500 million years ago, the diversity of life on Earth suddenly exploded. Known as the Cambrian Explosion, this dramatic episode saw the emergence of many forms of life that persist today.

Among these were the bivalves — hard-twin-shelled organisms that live on the seafloor. A group of researchers decided to catalogue the rise of the bivalves to see how they fared in a nearly empty sea with a brand-new body design.

The research team, including Stewart Edie (PhD’18) with the Smithsonian’s National Museum of Natural History, Katie Collins with the U.K.’s Natural History Museum, and Sharon Zhou, a fourth-year undergraduate student at UChicago, went through the fossil record and painstakingly examined each known fossil species to get a picture of how the bivalves evolved new forms and ways of living — such as burrowing into the seafloor sediment versus attaching themselves to rocks. “For example, you can look at the shape of the shell and tell if they are likely digging into the seafloor sediment, because they become long and thin for burrowing,” explained Zhou.

They pieced together a comprehensive picture of the bivalves’ evolution — and were surprised.

“You might think that they would take immediate advantage of this new body design and go on to fame and biological fortune,” said David Jablonski, the William R. Kenan Jr. Distinguished Service Professor of Geophysical Sciences at UChicago and co-corresponding author on the paper. “But they didn’t.”

Instead, the bivalves branched out slowly compared to other groups that originated at the time. “It’s kind of amazing they made it through at all,” said Jablonski. “Even after they got their act together and began to diversify about 40 million years in, they never showed a true explosion in species or ecologies.”

One thing they wanted to check was whether this could be a false impression caused by some gap in the fossil record. Collins explained that fossils from that era are difficult to find in the first place — many rocks have since been metamorphized into other rock types — and also hard to identify where they do exist.

However, Edie and Zhou ran a series of tests and computer simulations and found this was unlikely to have affected the results: “We’d need a really extreme simulation to change the pattern we see in the rocks,” said Edie. “It’s much more likely that this slow start was the real story.”

It’s not clear why the bivalves lagged, but one possibility is that they hadn’t yet evolved a key organ that allowed them to take off: an enlarged gill to filter out plankton from water, as so many bivalves do today. By the time they came up with this adaptation, the seafloor was much more crowded. “If you show up early to the dance floor, you can do whatever you want, but if you show up late, it restricts the range of moves,” Jablonski said.

But the bivalves do survive and even thrive today, despite their lag. “It tells us there’s more than one pathway to success, even when you are starting at the very beginning of multicellular life,” said Jablonski.

Scientists are particularly interested in cataloguing these accounts of evolution, because they can suggest how life adapts and radiates in the wake of major disruptions or extinctions. The researchers plan to look at bivalves’ response to extinctions over time and see if similar patterns emerge.

“For all kinds of reasons, we want to understand what it means to repopulate after an extinction — for example, what could happen as a result of the major extinction we are undergoing right now,” said Jablonski.

The study was also a learning experience for Zhou, who is an undergraduate at the University of Chicago.

Zhou intended to major in math, but was hooked on evolutionary biology after she took a course to fulfill UChicago’s Core requirements in the sciences. She spent several years working in Jablonski’s lab, and now plans to attend graduate school in the subject.

“How life happens on earth — to me, that is one of the greatest mysteries we can try to solve,” said Zhou.

UChicago postdoctoral researcher Nicholas Crouch was also a co-author on the paper.

The clams that fell behind, and what they can tell us about evolution and extinction – NovLink

The post The clams that fell behind, and what they can tell us about evolution and extinction – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685680496) } [8]=> array(11) { ["title"]=> string(87) "Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink" ["link"]=> string(135) "https://latestmovs.packagingnewsonline.com/science/astrophysicists-confirm-the-faintest-galaxy-ever-seen-in-the-early-universe-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Fri, 02 Jun 2023 00:49:06 +0000" ["category"]=> string(7) "science" ["guid"]=> string(135) "https://latestmovs.packagingnewsonline.com/science/astrophysicists-confirm-the-faintest-galaxy-ever-seen-in-the-early-universe-novlink/" ["description"]=> string(1162) "

Journal Reference: Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro Morishita, Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly, Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati, Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Maruša Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabró, Jose M. Diego, Alan ... Read more

The post Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(6366) "

Journal Reference:

  1. Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro Morishita, Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly, Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati, Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Maruša Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabró, Jose M. Diego, Alan Dressler, Lukas J. Furtak, Alexei V. Filippenko, Alaina Henry, Anton M. Koekemoer, Nicha Leethochawalit, Matthew A. Malkan, Charlotte Mason, Amata Mercurio, Benjamin Metha, Laura Pentericci, Justin Pierel, Steven Rieck, Namrata Roy, Paola Santini, Victoria Strait, Robert Strausbaugh, Michele Trenti, Benedetta Vulcani, Lifan Wang, Xin Wang, Rogier A. Windhorst. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature, 2023; DOI: 10.1038/s41586-023-05994-w

The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today.

Researchers led by astrophysicists from UCLA confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.

An international research team led by UCLA astrophysicists has confirmed the existence of the faintest galaxy ever seen in the early universe. The galaxy, called JD1, is one of the most distant identified to date, and it is typical of the kinds of galaxies that burned through the fog of hydrogen atoms left over from the Big Bang, letting light shine through the universe and shaping it into what exists today.

The discovery was made using NASA’s James Webb Space Telescope, and the findings are published in the journal Nature.

The first billion years of the universe’s life were a crucial period in its evolution. After the Big Bang, approximately 13.8 billion years ago, the universe expanded and cooled sufficiently for hydrogen atoms to form. Hydrogen atoms absorb ultraviolet photons from young stars; however, until the birth of the first stars and galaxies, the universe became dark and entered a period known as the cosmic dark ages. The appearance of the first stars and galaxies a few hundred million years later bathed the universe in energetic ultraviolet light which began burning, or ionizing, the hydrogen fog. That, in turn, enabled photons to travel through space, rendering the universe transparent.

Determining the types of galaxies that dominated that era — dubbed the Epoch of Reionization — is a major goal in astronomy today, but until the development of the Webb telescope, scientists lacked the sensitive infrared instruments required to study the first generation of galaxies.

“Most of the galaxies found with JWST so far are bright galaxies that are rare and not thought to be particularly representative of the young galaxies that populated the early universe,” said Guido Roberts-Borsani, a UCLA postdoctoral researcher and the study’s first author. “As such, while important, they are not thought to be the main agents that burned through all of that hydrogen fog.

“Ultra-faint galaxies such as JD1, on the other hand, are far more numerous, which is why we believe they are more representative of the galaxies that conducted the reionization process, allowing ultraviolet light to travel unimpeded through space and time.”

JD1 is so dim and so far away that it is challenging to study without a powerful telescope — and a helping hand from nature. JD1 is located behind a large cluster of nearby galaxies, called Abell 2744, whose combined gravitational strength bends and amplifies the light from JD1, making it appear larger and 13 times brighter than it otherwise would. The effect, known as gravitational lensing, is similar to how a magnifying glass distorts and amplifies light within its field of view; without gravitational lensing, JD1 would likely have been missed.

The researchers used the Webb Telescope’s near-infrared spectrograph instrument, NIRSpec, to obtain an infrared light spectrum of the galaxy, allowing them to determine its precise age and its distance from Earth, as well as the number of stars and amount of dust and heavy elements that it formed in its relatively short lifetime.

The combination of the galaxy’s gravitational magnification and new images from another one of the Webb Telescope’s near-infrared instruments, NIRCam, also made it possible for the team to study the galaxy’s structure in unprecedented detail and resolution, revealing three main elongated clumps of dust and gas that are forming stars. The team used the new data to trace JD1’s light back to its original source and shape, revealing a compact galaxy just a fraction of the size of older galaxies like the Milky Way, which is 13.6 billion years old.

Because light takes time to travel to Earth, JD1 is seen as it was approximately 13.3 billion years ago, when the universe was only about 4% of its present age.

“Before the Webb telescope switched on, just a year ago, we could not even dream of confirming such a faint galaxy,” said Tommaso Treu, a UCLA physics and astronomy professor, and the study’s second author. “The combination of JWST and the magnifying power of gravitational lensing is a revolution. We are rewriting the book on how galaxies formed and evolved in the immediate aftermath of the Big Bang.”

Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink

The post Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(1162) "

Journal Reference: Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro Morishita, Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly, Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati, Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Maruša Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabró, Jose M. Diego, Alan ... Read more

The post Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(6366) "

Journal Reference:

  1. Guido Roberts-Borsani, Tommaso Treu, Wenlei Chen, Takahiro Morishita, Eros Vanzella, Adi Zitrin, Pietro Bergamini, Marco Castellano, Adriano Fontana, Karl Glazebrook, Claudio Grillo, Patrick L. Kelly, Emiliano Merlin, Themiya Nanayakkara, Diego Paris, Piero Rosati, Lilan Yang, Ana Acebron, Andrea Bonchi, Kit Boyett, Maruša Bradač, Gabriel Brammer, Tom Broadhurst, Antonello Calabró, Jose M. Diego, Alan Dressler, Lukas J. Furtak, Alexei V. Filippenko, Alaina Henry, Anton M. Koekemoer, Nicha Leethochawalit, Matthew A. Malkan, Charlotte Mason, Amata Mercurio, Benjamin Metha, Laura Pentericci, Justin Pierel, Steven Rieck, Namrata Roy, Paola Santini, Victoria Strait, Robert Strausbaugh, Michele Trenti, Benedetta Vulcani, Lifan Wang, Xin Wang, Rogier A. Windhorst. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature, 2023; DOI: 10.1038/s41586-023-05994-w

The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today.

Researchers led by astrophysicists from UCLA confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.

An international research team led by UCLA astrophysicists has confirmed the existence of the faintest galaxy ever seen in the early universe. The galaxy, called JD1, is one of the most distant identified to date, and it is typical of the kinds of galaxies that burned through the fog of hydrogen atoms left over from the Big Bang, letting light shine through the universe and shaping it into what exists today.

The discovery was made using NASA’s James Webb Space Telescope, and the findings are published in the journal Nature.

The first billion years of the universe’s life were a crucial period in its evolution. After the Big Bang, approximately 13.8 billion years ago, the universe expanded and cooled sufficiently for hydrogen atoms to form. Hydrogen atoms absorb ultraviolet photons from young stars; however, until the birth of the first stars and galaxies, the universe became dark and entered a period known as the cosmic dark ages. The appearance of the first stars and galaxies a few hundred million years later bathed the universe in energetic ultraviolet light which began burning, or ionizing, the hydrogen fog. That, in turn, enabled photons to travel through space, rendering the universe transparent.

Determining the types of galaxies that dominated that era — dubbed the Epoch of Reionization — is a major goal in astronomy today, but until the development of the Webb telescope, scientists lacked the sensitive infrared instruments required to study the first generation of galaxies.

“Most of the galaxies found with JWST so far are bright galaxies that are rare and not thought to be particularly representative of the young galaxies that populated the early universe,” said Guido Roberts-Borsani, a UCLA postdoctoral researcher and the study’s first author. “As such, while important, they are not thought to be the main agents that burned through all of that hydrogen fog.

“Ultra-faint galaxies such as JD1, on the other hand, are far more numerous, which is why we believe they are more representative of the galaxies that conducted the reionization process, allowing ultraviolet light to travel unimpeded through space and time.”

JD1 is so dim and so far away that it is challenging to study without a powerful telescope — and a helping hand from nature. JD1 is located behind a large cluster of nearby galaxies, called Abell 2744, whose combined gravitational strength bends and amplifies the light from JD1, making it appear larger and 13 times brighter than it otherwise would. The effect, known as gravitational lensing, is similar to how a magnifying glass distorts and amplifies light within its field of view; without gravitational lensing, JD1 would likely have been missed.

The researchers used the Webb Telescope’s near-infrared spectrograph instrument, NIRSpec, to obtain an infrared light spectrum of the galaxy, allowing them to determine its precise age and its distance from Earth, as well as the number of stars and amount of dust and heavy elements that it formed in its relatively short lifetime.

The combination of the galaxy’s gravitational magnification and new images from another one of the Webb Telescope’s near-infrared instruments, NIRCam, also made it possible for the team to study the galaxy’s structure in unprecedented detail and resolution, revealing three main elongated clumps of dust and gas that are forming stars. The team used the new data to trace JD1’s light back to its original source and shape, revealing a compact galaxy just a fraction of the size of older galaxies like the Milky Way, which is 13.6 billion years old.

Because light takes time to travel to Earth, JD1 is seen as it was approximately 13.3 billion years ago, when the universe was only about 4% of its present age.

“Before the Webb telescope switched on, just a year ago, we could not even dream of confirming such a faint galaxy,” said Tommaso Treu, a UCLA physics and astronomy professor, and the study’s second author. “The combination of JWST and the magnifying power of gravitational lensing is a revolution. We are rewriting the book on how galaxies formed and evolved in the immediate aftermath of the Big Bang.”

Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink

The post Astrophysicists confirm the faintest galaxy ever seen in the early universe – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685666946) } [9]=> array(11) { ["title"]=> string(51) "Fastest industry standard optical fiber – NovLink" ["link"]=> string(99) "https://latestmovs.packagingnewsonline.com/science/fastest-industry-standard-optical-fiber-novlink/" ["dc"]=> array(1) { ["creator"]=> string(12) "Aaron Mathis" } ["pubdate"]=> string(31) "Thu, 01 Jun 2023 21:06:45 +0000" ["category"]=> string(7) "science" ["guid"]=> string(99) "https://latestmovs.packagingnewsonline.com/science/fastest-industry-standard-optical-fiber-novlink/" ["description"]=> string(979) "

Journal Reference: Georg Rademacher, Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa. Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter. Proceedings of the 46th Optical Fiber Communication Conference, ... Read more

The post Fastest industry standard optical fiber – NovLink first appeared on Latest Movs.

" ["content"]=> array(1) { ["encoded"]=> string(5176) "

Journal Reference:

  1. Georg Rademacher, Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa. Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter. Proceedings of the 46th Optical Fiber Communication Conference, 2023 DOI: 10.1364/OFC.2023.Th4A.4

A team of Japanese, Australian, Dutch, and Italian researchers has set a new speed record for an industry standard optical fibre, achieving 1.7 Petabits over a 67km length of fibre. The fibre, which contains 19 cores that can each carry a signal, meets the global standards for fibre size, ensuring that it can be adopted without massive infrastructure change. And it uses less digital processing, greatly reducing the power required per bit transmitted.

Macquarie University researchers supported the invention by developing a 3D laser-printed glass chip that allows low loss access to the 19 streams of light carried by the fibre and ensures compatibility with existing transmission equipment.

The fibre was developed by the Japanese National Institute of Information and Communications Technology (NICT, Japan) and Sumitomo Electric Industries, Ltd. (SEI, Japan) and the work was performed in collaboration with the Eindhoven University of Technology, University of L’Aquila, and Macquarie University.

All the world’s internet traffic is carried through optical fibres which are each 125 microns thick (comparable to the thickness of a human hair). These industry standard fibres link continents, data centres, mobile phone towers, satellite ground stations and our homes and businesses.

Back in 1988, the first subsea fibre-optic cable across the Atlantic had a capacity of 20 Megabits or 40,000 telephone calls, in two pairs of fibres. Known as TAT 8, it came just in time to support the development of the World Wide Web. But it was soon at capacity.

The latest generation of subsea cables such as the Grace Hopper cable, which went into service in 2022, carries 22 Terabits in each of 16 fibre pairs. That’s a million times more capacity than TAT 8, but it’s still not enough to meet the demand for streaming TV, video conferencing and all our other global communication.

“Decades of optics research around the world has allowed the industry to push more and more data through single fibres,” says Dr Simon Gross from Macquarie University’s School of Engineering. “They’ve used different colours, different polarisations, light coherence and many other tricks to manipulate light.”

Most current fibres have a single core that carries multiple light signals. But this current technology is practically limited to only a few Terabits per second due to interference between the signals.

“We could increase capacity by using thicker fibres. But thicker fibres would be less flexible, more fragile, less suitable for long-haul cables, and would require massive reengineering of optical fibre infrastructure,” says Dr Gross.

“We could just add more fibres. But each fibre adds equipment overhead and cost and we’d need a lot more fibres.”

To meet the exponentially growing demand for movement of data, telecommunication companies need technologies that offer greater data flow for reduced cost.

The new fibre contains 19 cores that can each carry a signal.

“Here at Macquarie University, we’ve created a compact glass chip with a wave guide pattern etched into it by a 3D laser printing technology. It allows feeding of signals into the 19 individual cores of the fibre simultaneously with uniform low losses. Other approaches are lossy and limited in the number of cores,” says Dr Gross.

“It’s been exciting to work with the Japanese leaders in optical fibre technology. I hope we’ll see this technology in subsea cables within five to 10 years.”

Another researcher involved in the experiment, Professor Michael Withford from Macquarie University’s School of Mathematical and Physical Sciences, believes this breakthrough in optical fibre technology has far-reaching implications.

“The optical chip builds on decades of research into optics at Macquarie University,” says Professor Withford. “The underlying patented technology has many applications including finding planets orbiting distant stars, disease detection, even identifying damage in sewage pipes.”

Fastest industry standard optical fiber – NovLink

The post Fastest industry standard optical fiber – NovLink first appeared on Latest Movs.

" } ["summary"]=> string(979) "

Journal Reference: Georg Rademacher, Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa. Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter. Proceedings of the 46th Optical Fiber Communication Conference, ... Read more

The post Fastest industry standard optical fiber – NovLink first appeared on Latest Movs.

" ["atom_content"]=> string(5176) "

Journal Reference:

  1. Georg Rademacher, Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa. Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter. Proceedings of the 46th Optical Fiber Communication Conference, 2023 DOI: 10.1364/OFC.2023.Th4A.4

A team of Japanese, Australian, Dutch, and Italian researchers has set a new speed record for an industry standard optical fibre, achieving 1.7 Petabits over a 67km length of fibre. The fibre, which contains 19 cores that can each carry a signal, meets the global standards for fibre size, ensuring that it can be adopted without massive infrastructure change. And it uses less digital processing, greatly reducing the power required per bit transmitted.

Macquarie University researchers supported the invention by developing a 3D laser-printed glass chip that allows low loss access to the 19 streams of light carried by the fibre and ensures compatibility with existing transmission equipment.

The fibre was developed by the Japanese National Institute of Information and Communications Technology (NICT, Japan) and Sumitomo Electric Industries, Ltd. (SEI, Japan) and the work was performed in collaboration with the Eindhoven University of Technology, University of L’Aquila, and Macquarie University.

All the world’s internet traffic is carried through optical fibres which are each 125 microns thick (comparable to the thickness of a human hair). These industry standard fibres link continents, data centres, mobile phone towers, satellite ground stations and our homes and businesses.

Back in 1988, the first subsea fibre-optic cable across the Atlantic had a capacity of 20 Megabits or 40,000 telephone calls, in two pairs of fibres. Known as TAT 8, it came just in time to support the development of the World Wide Web. But it was soon at capacity.

The latest generation of subsea cables such as the Grace Hopper cable, which went into service in 2022, carries 22 Terabits in each of 16 fibre pairs. That’s a million times more capacity than TAT 8, but it’s still not enough to meet the demand for streaming TV, video conferencing and all our other global communication.

“Decades of optics research around the world has allowed the industry to push more and more data through single fibres,” says Dr Simon Gross from Macquarie University’s School of Engineering. “They’ve used different colours, different polarisations, light coherence and many other tricks to manipulate light.”

Most current fibres have a single core that carries multiple light signals. But this current technology is practically limited to only a few Terabits per second due to interference between the signals.

“We could increase capacity by using thicker fibres. But thicker fibres would be less flexible, more fragile, less suitable for long-haul cables, and would require massive reengineering of optical fibre infrastructure,” says Dr Gross.

“We could just add more fibres. But each fibre adds equipment overhead and cost and we’d need a lot more fibres.”

To meet the exponentially growing demand for movement of data, telecommunication companies need technologies that offer greater data flow for reduced cost.

The new fibre contains 19 cores that can each carry a signal.

“Here at Macquarie University, we’ve created a compact glass chip with a wave guide pattern etched into it by a 3D laser printing technology. It allows feeding of signals into the 19 individual cores of the fibre simultaneously with uniform low losses. Other approaches are lossy and limited in the number of cores,” says Dr Gross.

“It’s been exciting to work with the Japanese leaders in optical fibre technology. I hope we’ll see this technology in subsea cables within five to 10 years.”

Another researcher involved in the experiment, Professor Michael Withford from Macquarie University’s School of Mathematical and Physical Sciences, believes this breakthrough in optical fibre technology has far-reaching implications.

“The optical chip builds on decades of research into optics at Macquarie University,” says Professor Withford. “The underlying patented technology has many applications including finding planets orbiting distant stars, disease detection, even identifying damage in sewage pipes.”

Fastest industry standard optical fiber – NovLink

The post Fastest industry standard optical fiber – NovLink first appeared on Latest Movs.

" ["date_timestamp"]=> int(1685653605) } } ["channel"]=> array(7) { ["title"]=> string(11) "Latest Movs" ["link"]=> string(42) "https://latestmovs.packagingnewsonline.com" ["lastbuilddate"]=> string(31) "Sat, 03 Jun 2023 09:23:54 +0000" ["language"]=> string(5) "en-US" ["sy"]=> array(2) { ["updateperiod"]=> string(9) " hourly " ["updatefrequency"]=> string(4) " 1 " } ["generator"]=> string(30) "https://wordpress.org/?v=6.2.2" ["tagline"]=> NULL } ["textinput"]=> array(0) { } ["image"]=> array(0) { } ["feed_type"]=> string(3) "RSS" ["feed_version"]=> string(3) "2.0" ["encoding"]=> string(5) "UTF-8" ["_source_encoding"]=> string(5) "UTF-8" ["ERROR"]=> string(0) "" ["WARNING"]=> string(0) "" ["_CONTENT_CONSTRUCTS"]=> array(6) { [0]=> string(7) "content" [1]=> string(7) "summary" [2]=> string(4) "info" [3]=> string(5) "title" [4]=> string(7) "tagline" [5]=> string(9) "copyright" } ["_KNOWN_ENCODINGS"]=> array(3) { [0]=> string(5) "UTF-8" [1]=> string(8) "US-ASCII" [2]=> string(10) "ISO-8859-1" } ["stack"]=> array(0) { } ["inchannel"]=> bool(false) ["initem"]=> bool(false) ["incontent"]=> bool(false) ["intextinput"]=> bool(false) ["inimage"]=> bool(false) ["current_namespace"]=> bool(false) ["last_modified"]=> string(30) "Sun, 4 Jun 2023 06:33:47 GMT " }